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Abstract: This study evaluates the use of general mortality–size relationships for the assessment of release size in stocked
fisheries. Seven release experiments (53 stocking events) are analysed, using a survival model based on allometric mortal-
ity and linear-length growth, allowing variation between experiments in both the allometric exponent and the level of mor-
tality at reference length or generalising in one or both of the parameters. Results support the existence of a consistent
allometry that applies independently of the overall level of mortality. The best-performing model is one in which the
length exponent of mortality is set to –1 a priori, while mortality at reference length is allowed to vary between experi-
ments (ranging from 0.7 to 33 per year at 15 cm in the present study). Even though the allometry of mortality is con-
stant, the relative survival advantage of stocking large fish increases with the level of mortality at reference length. Using
the identified length exponent of mortality of –1, survival models are derived for the linear, exponential, and von
Bertalanffy growth equations. The models can be used to assess alternative release sizes, given an estimate of mortality at
reference length, to facilitate comparative studies and to aid in the design of release experiments.

Résumé: Le but de cette étude est d’évaluer l’utilité des relations générales entre la mortalité et la taille pour établir
la taille des poissons à l’ensemencement dans les pêches qui dépendent de l’alevinage. Sept expériences
d’ensemencement (53 événements) servent de base à des analyses à l’aide d’un modèle de survie basé sur une
mortalité allométrique et une croissance en longueur linéaire, qui permet des variations, d’une expérience à l’autre, tant
du coefficient d’allométrie que du taux de mortalité à la longueur de référence, ou alors qui autorise des généralisations
de l’un ou de l’autre de ces variables. Les résultats laissent croire à l’existence d’une allométrie uniforme qui
s’applique indépendamment du taux global de mortalité. Le modèle le plus performant est celui où l’exposant de la
longueur dans l’estimation de la mortalité est fixé a priori à –1, alors que la mortalité à la longueur de référence peut
varier d’une expérience à l’autre (allant de 0,7 à 33 par année à 15 cm dans notre étude). Bien que l’allométrie de la
mortalité soit constante, l’avantage relatif pour la survie d’ensemencer avec de plus gros poissons s’accroît avec le taux
de mortalité à la longueur de référence. En utilisant un exposant de la longueur de –1, j’ai pu élaborer des modèles de
survie incorporant les équations de croissance linéaire, exponentielle et de von Bertalanffy. Les modèles peuvent servir
à évaluer les effets des ensemencements à différentes tailles pour une estimation donnée de la mortalité à la taille de
référence; ils peuvent aussi faciliter les études comparatives et contribuer à l’élaboration d’expériences
d’ensemencement.

[Traduit par la Rédaction]
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Stocking is widely used in the management of freshwater
and, to a lesser extent, coastal-marine fisheries (e.g., Leber
and Blankenship 1995; Welcomme and Bartley 1998; Hei-
dinger 1999). A key problem in the management of stocked
fisheries is the optimisation of release size (e.g., Cowx 1994;
Leber and Blankenship 1995). The optimal release size de-
pends on the contribution that fish of a particular size will
make to the catch or fishable stock and on the resources re-
quired to produce seed fish of that size. Of the data required

to assess optimum size, the expected survival of seed fish of
different sizes to the fishable stock (and (or) contribution to
the catch) are the most difficult to obtain. Systematic assess-
ments have been either entirely empirical (release–recapture
of marked seed fish of different sizes) or based on detailed
ecological studies (Wahl et al. 1995; Szendrey and Wahl
1996). However, the costs and effort involved in both ap-
proaches restrict their use to a small number of fisheries, and
the results are not readily generalised. An alternative ap-
proach that implies a simple generalisation is the use of
allometric mortality–size relationships (Lorenzen 1995;
Lorenzen et al. 1997). Provided that natural mortality in
stocked fish is subject to a consistent allometry, then an esti-
mate of mortality for a single reference size is sufficient to
predict survival for a range of different release sizes.

Theoretical and empirical studies (Peterson and
Wroblewski 1984; McGurk 1986; Lorenzen 1996) point to
the existence of an allometric relationship between natural
mortality and body weight, in fish, of the form:

(1) MW = MuWb
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whereMW is natural mortality at weightW, Mu is mortality
at unit weight, andb is the allometric exponent. Empirical
studies combining data from a large number of populations
have yielded estimates for the exponentb of –0.37 for ma-
rine fish of all life stages (predictive regression; McGurk
1986) and of –0.29 for juvenile and adult freshwater and ma-
rine fish (nonparametric regression; Lorenzen 1996). The
study by Lorenzen (1996) also indicates that within-
population estimates ofb rarely differ significantly from the
overall average. Given that weight is approximately propor-
tional to the third power of length,b values of approximately
–1/3 imply that natural mortality is inversely proportional to
body length. An inverse relationship between natural mortality
and fish length has been assumed in a number of population-
dynamics studies (e.g Logan 1985; Beyer et al. 1999) but
has not been tested explicitly.

Allometric mortality–size relationships have been used in
a theoretical study of the population dynamics of stocked
fisheries (Lorenzen 1995) and in a practical assessment of a
culture-based fishery (Lorenzen et al. 1997). However, the
general applicability of such relationships to the analysis of
stocking experiments has not yet been tested. In particular, it
is unclear whether the mortality of stocked fish is subject to
a consistent allometric relationship and, if so, whether the
allometry is the same as that observed in wild fish.

The purpose of the present study is to test the applicabil-
ity of survival models based on allometric mortality–size re-
lationships to the analysis of stocking experiments, and to
provide practical models for the assessment of release size
based on such relationships. An equation is derived to pre-
dict the survival of stocked fish from length at release, based
on linear-length growth and allometric mortality equations.
Alternative models based on this survival equation, but as-
suming different generalisations in the mortality–size rela-
tionship, are used to analyse a set of stocking experiments.
Results support the hypotheses that survival of stocked fish
is governed by a consistent allometry and that the length ex-
ponent of the relationship is approximately –1 (i.e., mortal-
ity is inversely proportional to length). The dynamics of
survival implied by this relationship are explored. Finally,
survival models based on this relationship are presented for
linear, exponential, and von Bertalanffy growth equations,
and their use in practical assessments is discussed.

Materials and methods

Empirical data
Seven published stocking experiments comprising a total of 53

stocking events (cohorts stocked) were identified from the litera-
ture. Criteria for selection were the reporting of true-survival esti-
mates (as opposed to recapture in the fishery or other measures of
relative survival), the number of stocking events, and the range of
release sizes. Key information on the studies selected is given in
Table 1. Each study is restricted to a single species and water body,
but often comprises experiments carried out over more than 1 year.
The time at large between stocking and survival estimate ranged
from 0.1 to 1.3 years. Because the time at large was generally
short, growth was described by a linear length growth rate (see be-
low). Average linear-growth rates,u, were estimated from data for
the populations analysed, except for studies A and B, in which
cases data for neighbouring populations reported in the same publi-
cation (Margenau 1992) were used. Refer to Seber (1982) for a de-
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scription of the methods used to estimate post-stocking abundance
and survival.

Survival model
The allometric relationship between natural mortality and body

length may be described by the equation

(2) M M
l
l

l r
r

c

=










whereMl is the mortality rate at lengthl, Mr is the instantaneous
mortality rate at reference lengthlr , andc is the allometric expo-
nent of the mortality–length relationship.

If this relationship governs mortality in the stocked population,
then the decline in numbers,N, of a stocked cohort (organisms of
the same age and size) is described by the differential equation

(3)
d
d
N
t

N M
l
l

t
t r

t

r

c

= −










where l t is length at timet. This differential equation may be
solved explicitly if a growth model is substituted forl t . A linear
length growth model is used in the empirical analysis, because
time at large is short and the size of the fish is small relative to the
reported maximum sizes in all stocking experiments analysed (Ta-
ble 1). A model of the form

(4) l t = l0 + ut

is used, wherel0 is the length at stocking,t is the time since stock-
ing, andu is the linear length growth rate. Substitution of eq. 4 into
eq. 3, integration, and division byN0 on both sides gives the fol-
lowing equation to predict survival,St (proportion of stocked fish
surviving), from the time of stocking to timet:
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

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Analysis
To test whether the observed patterns in survival are consistent

with the hypothesis of a single underlying allometry, five different
models are fitted to the full data set:

(6) Model 1: S = f (l r,l0i,ti,uj | Mj,cj)
Model 2: S = f (l r,l0i,ti,uj | Mj,c)
Model 3: S = f (l r,l0i,ti,uj | Mj,–1)
Model 4: S = f (l r,l0i,ti,uj | M,cj)
Model 5: S = f (l r,l0i,ti,uj | M,c)

where the indexi denotes individual stocking events (i = 1 to 53),
and j denotes the experiment (j = A–G). While in model 1, bothMr
andc are estimated separately for each experiment, the other mod-
els generalise across experiments by estimating a single value for
either or both of the parameters. In model 3,c is not estimated but
is fixed at –1 a priori, reflecting the assumption that mortality is in-
versely proportional to length.

Because the survival estimates have been obtained using a vari-
ety of different methods, they do not have a coherent error struc-
ture, making the application of maximum-likelihood methods
difficult. Hence, the models are fitted by the method of least
squares, applying an arcsine square-root transformation to ob-
served and predicted survival, to stabilise the variance. The sum of
squares (SSQ) is thus defined as

© 2000 NRC Canada
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Model 1 Model 2 Model 3 Model 4 Model 5

Mr c Mr c Mr c Mr c Mr c

Experiment
A 10.8 –1.18 10.5 –1.12 9.9 –1 4.2 0.68 5.5 0.95
B 23.6 –1.79 17.1 –1.12 16.1 –1 4.2 1.58 5.5 0.95
C 135.8 –5.21 20.7 –1.12 19.8 –1 4.2 4.44 5.5 0.95
D 0.9 –0.80 0.7 –1.12 0.8 –1 4.2 0.95 5.5 0.95
E 0.9 –0.60 0.6 –1.12 0.7 –1 4.2 1.22 5.5 0.95
F 2.2 –24.58 32.3 –1.12 32.7 –1 4.2 –19.11 5.5 0.95
G 3.7 –1.74 3.1 –1.12 3.0 –1 4.2 –2.01 5.5 0.95

SSQ 0.741 0.941 0.945 1.966 6.096
n 53 53 53 53 53
m 14 8 7 7 2
SSQ(n – 2m)–1 0.030 0.025 0.024 0.050 0.124

Note: Mr is the mortality at reference lengthlr = 15 cm,c is the allometric length exponent of mortality,n is the number of observations,m is the
number of parameters estimated, and SSQ(n – 2m)–1 is the goodness-of-fit criterion.

Table 2. Parameter estimates and goodness-of-fit criteria.

Fig. 1. Goodness-of-fit profile (sum of squares (SSQ)) of the
allometric mortality exponent,c, using model 2. The horizontal
line defines the approximate 95% confidence interval forc.
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Fig. 2. Observed (j) and predicted (d) (model 3) survival in the seven stocking experiments analysed. Letters refer to the experiment
codes in Table 1. Confidence limits (95%) are indicated when available from the original publication.
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(7) SSQ arcsin arcsino p= −





=
∑ S Si i
i

n

, ,

2

1

with Si,o the observed survival andSi,p the survival predicted from
eq. 5. To compare the alternative models, the criterion

(8)
SSQ

n m− 2

is used, wheren is the number of observations andm is the number
of parameters estimated (Hilborn and Mangel 1997). The model
with the lowest value of the criterion is selected as the best model.

A goodness-of-fit (SSQ) profile was generated for the allometric
exponentc (Hilborn and Mangel 1997). Approximate confidence
bounds forc were determined from the profile as the values ofc
that satisfy

(9) SSQ SSQ( ) ( $) ( , , )c c
n

F n= +
−

− −





1
1

1
1 1 1 α

whereSSQ($)c is minimum SSQ,F is theF distribution, and 1–α is
the confidence level (Draper and Smith 1981).

Results

Parameter estimates and goodness-of-fit criteria for the al-
ternative models (eq. 6) are given in Table 2. Models 2 and
3, based on a generalised allometry with variableMr provide
the best fit. The estimate ofc in model 2 is –1.12, close to
the value of –1 assumed a priori in model 3. Model 3 pro-
vides the best fit overall, with the reduction in the number of
parameters to be estimated outweighing the slight increase
in SSQ compared with model 2. Models 4 and 5, assuming

constantMr and variable or constant allometric exponentc,
perform far worse than the others. Overall, these results in-
dicate that, while the allometric exponentc can be general-
ised across experiments,Mr is too variable to be generalised.

A goodness-of-fit profile for the allometric exponentc is
shown in Fig. 1. The approximate 95% confidence interval
for c is (–1.66 to –0.62) and the profile is fairly flat between
–1.3 and –1.0.

Model 3, with c = –1, is therefore selected as the best-
performing model. A comparison of observed survival and
model 3 predictions for the seven studies is shown in Fig. 2.
Note that, because periods at large,t, vary between stocking
events, data and model predictions do not form a smooth
curve. In most studies, there is close correspondence be-
tween observed and predicted patterns. Relatively large devi-
ations in experiments C and F reflect strong interannual
variation in survival.

In Fig. 3, residuals of model 3 are plotted against pre-
dicted survival and the independent variables. No systematic
patterns are apparent, apart from a small cluster of mainly
positive residuals for periods at large between 0.2 and 0.6
years in Fig. 3c.

Discussion

Results from the present analysis show that stocking ex-
periments with fish of different release sizes can be analysed
and interpreted on the basis of allometric mortality–size re-
lationships, with a constant allometric scaling and population-
specific mortality at reference size. This result lends further
support to the existence of a fundamental allometry of

© 2000 NRC Canada
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Fig. 3. Diagnostic plots of model 3 (c = –1) residuals against predicted survival (a), length at release (b), period at large (c), and
growth rate (d).

J:\cjfas\cjfas57\cjfas-12\F00-215.vp
Tuesday, December 19, 2000 8:23:28 AM

Color profile: Disabled
Composite  Default screen



mortality that applies to stocked as well as wild fish in natu-
ral ecosystems. The allometric exponent is far more stable
between populations than the overall level of mortality.
Moreover, the simple assumption that mortality is inversely
related to fish length, corresponding to a weight exponent of
–1/3, was found to be adequate for the analysis of release
size. This relationship is mathematically convenient, because
it leads to relatively simple survival equations for stocked
fish.

The dynamics of survival in relation to release size im-
plied by model 3 (c = –1) with different levels ofMr is illus-
trated in Fig. 4. Figure 4a shows the effect on survival of
differentMr (0, 1, and 2/year) at a constant growth rate,u, of
10 cm/year. Note that the relative size dependence of sur-
vival increases withMr , i.e., constant allometry of mortality
does not imply constant relative survival at different release
sizes. The higher the overall level of mortality (Mr), the
greater the relative survival advantage of large release sizes,
a prediction consistent with the observation that high levels
of predation require large seed fish for stocking (e.g.,
Heidinger 1999). Figure 4b shows the effect on survival of

different linear-growth rates,u (0, 10, and 20 cm/year), for
constant Mr (1/year). Survival increases with increasing
growth rate, but the effect is far less pronounced than that of
differences inMr (Fig. 4a). Note that, in the seven studies
analysed, estimates ofMr ranged from 0.7 to 33/year (a range
far wider than the 0–2/year plotted in Fig. 4a), while esti-
mates of the average growth rate,u, ranged from 5 to
20 cm/year (less than the range of 0–20 cm/year plotted in
Fig. 4b). Hence, variation in the overall level of mortality
(measured byMr) is likely to play a more important role in
determining optimal stocking size and the viability of en-
hancements than variation in growth.

Results of the present study indicate that survival models
based on allometric mortality–length relationships withc = –1
and population-specificMr provide practical tools for assess-
ing optimal release size in stocking programmes. A linear
length growth model was used in the analysis, because peri-
ods at large were short and fish were small relative to the as-
ymptotic sizes reported for the respective species. However,
when using allometric mortality models to predict survival
over longer time periods, linear-growth models may no lon-
ger be adequate. Exponential and von Bertalanffy growth
models may be substituted into eq. 3 and, in the case ofc =
1, integration leads to the fairly simple survival equations
given in Table 3. The application of these survival models to
the analysis and prediction of stocking outcomes requires an
estimate ofMr in the population in question (as well as the
growth parameters). Estimation ofMr requires data on the
absolute post-stocking abundance of the stocked fish; an in-
dicator of relative survival such as the recapture rate, which
reflects a combination of survival and harvesting effort, is
not sufficient. If absolute-survival data are available from
stocking with a particular release size, the use of the equa-
tions in Table 3 to assess the survival of alternative sizes is
straightforward.

If only recapture (rather than absolute survival) has been
estimated, there is a range of possible responses in recapture
to changes in release size, which is dependent on the under-
lying true survival. To illustrate this in a simple example, as-
sume that the recapture rate from a brief fishing event at
time t after release is available. RecaptureRt is then the
product of survival to timet and the proportional harvest
rate H:

(10) Rt = StH

For a givenRt , absolute survivalSt must be between 1 (no
natural mortality,Rt = H) andRt (complete harvesting,Rt =
St). These extremes define the range of possible responses to
changes in release size, from size-independent survival at
St = 1 (and thereforeMr = 0) to the most strongly size-de-
pendent survival atSt = Rt. This is illustrated in an example
(Fig. 5) for a known recapture ofRt = 0.125 for 10-cm seed
fish (t = 1 year, u = 10 cm/year). The range of possible
responses is bounded by the extreme cases ofS = 1 andS =
0.125. Although the exact response cannot be predicted
without knowledge ofMr, even a bounded range of possibili-
ties may aid management decision making and the design of
experiments to resolve the remaining uncertainty. Moreover,
it may often be possible to identify a likely range for the
harvest rates in a fishery and, therefore, narrow down the
range of possibilities. However, in practice, the analysis of
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Fig. 4. Relationships between release size and survival for different
mortalities at reference length (Mr; solid line, Mr = 0/year; dashed
line, Mr = 1/year; dotted line,Mr = 2/year) (a) and different growth
rates (u; solid line, u = 0 cm/year; dashed line,u = 10 cm/year;
dotted line,u = 20 cm/year) (b). All predictions are based on model
3 (c = –1), with u = 10 cm/year ina andMr = 1/year inb. The
dashed line is identical in the two graphs.
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recaptures for a range of release sizes may also be compli-
cated further by differences in harvest rates (related to, for
example, differential size and habitat use at the time of har-
vesting). Differences in harvest rates are implicitly ac-
counted for when absolute-abundance estimates are used,
but may be difficult to separate from true differences in sur-
vival when only recapture data are available.

Although the studies analysed are unlikely to be represen-
tative of stocking programmes, and the levels of mortality
should not be taken as indicative of the survival of stocked
fish in general, it is interesting to compare theMr estimates
with values measured in natural populations. Based on
length–weight relationships given in Carlander (1953, 1969),
the approximate weight at a length of 15 cm is 15 g forEsox

masquinongiand 35 g forOncorhynchus mykissand Stizo-
stedion vitreum. Substituting these value into the empirical
natural mortality – weight relationship for natural fish popu-
lations,M = 3W–0.29 (Lorenzen 1996), gives expected values
of Mr (at 15 cm) of 1.4 and 1.1 for natural populations of
E. masquinongiand of O. mykissand S. vitreum, respec-
tively. Hence the estimatedMr values for stocked fish are 3 to
30 times higher than expected for natural populations in the
experiments usingE. masquinongiand S. vitreum, but
slightly lower than expected for wild fish in theO. mykiss
experiments. These values indicate that the mortality of
stocked fish is highly variable and can be substantially
higher, as well as lower, than expected for natural fish popu-
lations.

In the survival models developed in the present study,
mortality is a continuous function of body size. Detailed
ecological studies suggest that distinct threshold sizes for
mortality may exist in some populations, for example, when
fish outgrow predation by key piscivores and shift habitat
use (Mittelbach and Chesson 1987). The consistency of em-
pirical mortality – body size relationships across ecosystems
and levels of organisation (McGurk 1986; Lorenzen 1996;
this study) suggests that such thresholds do not in general
lead to significant departures from the allometric mortality
relationship. Nonetheless, departures from the continuous
power relationship may occur at certain points in the ontog-
eny of stocked fish and, where this is the case, the detection
of thresholds through experimental studies may allow further
improvements in stocking regimes.

Detailed ecological studies (e.g., Wahl et al. 1995;
Szendrey and Wahl 1996) are required to improve under-
standing of the mechanisms underlying differences inMr
and to identify measures to reduceMr in stocked fishes. The
allometric survival models derived in the present study can
aid in assessing release size under a given mortality regime
and, thereby, contribute to improved management of stocked
fisheries. Furthermore, the allometric relationship provides a
basis for the comparison of mortalities between stocking ex-
periments. Widespread use of this approach may lead to a
substantial data base that would provide much information
for appraisal and evaluation of stocking programmes.
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Note: lt, length at timet; l0, length at stocking;u, linear-length growth rate;G, exponential-length
growth rate;l∞, asymptotic length;k, von Bertalanfly growth rate;Mr, mortality rate at reference lengthlr.

Table 3. Equations to predict the survival of stocked fish to timet after release (St) for c =
–1 (mortality inversely proportional to length), and linear, exponential, and von Bertalanffy
growth models.

Fig. 5. Possible responses in recapture (R) to changes in release
size, when recapture is known for a single release size but abso-
lute survival is not known. The extreme cases ofS = 1 (thick
solid line) andS = R (thick dashed line) define the boundaries of
possible relationships, with examples of intermediate relation-
ships shown as thin solid lines. In this example,R = 0.125 for l0
(release size) = 10 cm andu = 10 cm/year, and the extreme val-
ues of mortality areMr = 0/year (solid line,S = 1) andMr =
2/year (dashed line,S = 0.125).
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